InstantIR: Reparatur von beschädigten Bildern und HD-Zoom, Open-Source-Projekt, mindestens 16G Videospeicher

Neueste AI-ToolsGeschrieben vor 7 Monaten Sharenet.ai
1.3K 0
Trae

Allgemeine Einführung

InstantIR ist ein innovatives Einzelbild-Restaurationsmodell, das vom InstantX-Team entwickelt wurde, um Ihre beschädigten Bilder mit extrem hoher Qualität und naturgetreuen Details wiederherzustellen. Das Tool stellt nicht nur Bilddetails wieder her, sondern verbessert auch die Genauigkeit des wiederhergestellten Bildes durch zusätzliche Texthinweise. InstantIR verwendet SDXL- und DINOv2-Modelle und bietet eine flexible Pipeline von Konfigurationen, die vom Benutzer an seine spezifischen Bedürfnisse angepasst werden können.

InstantIR:受损图像修复与图像高清放大开源项目,最低16G显存

Online-Erfahrung: https://huggingface.co/InstantX/InstantIR

 

InstantIR:受损图像修复与图像高清放大开源项目,最低16G显存

InstantIR-Konfiguration

 

InstantIR:受损图像修复与图像高清放大开源项目,最低16G显存

Funktionsliste

  • Bild-RestaurierungHochwertige Restaurierung beschädigter oder minderwertiger Bilder.
  • Modelle generierenImage detail recovery using generative modeling techniques.
  • Text-Tipp-EditorBenutzerdefinierte Bearbeitung von Bildern mit Hilfe von Texteingabeaufforderungen.
  • Flexible KonfigurationUnterstützt eine Vielzahl von Parametereinstellungen, um unterschiedlichen Bildverarbeitungsanforderungen gerecht zu werden.
  • lokaler EinsatzGradio-Skripte werden zur Verfügung gestellt, um den lokalen Einsatz und Demos zu unterstützen.
  • Kompatibilität: Kompatibel mit Diffusoren und unterstützt viele leistungsstarke Funktionen.

 

Hilfe verwenden

Einbauverfahren

  1. Klonen des Repositorys und Einrichten der Umgebung::
    git clone https://github.com/instantX-research/InstantIR.git
    cd InstantIR
    conda create -n instantir python=3.9 -y
    conda activate instantir
    pip install -r requirements.txt
    
  2. Herunterladen des vortrainierten ModellsInstantIR basiert auf den Modellen SDXL und DINOv2, die von HuggingFace heruntergeladen werden können:
    from huggingface_hub import hf_hub_download
    hf_hub_download(repo_id="stabilityai/stable-diffusion-xl-base-1.0")
    hf_hub_download(repo_id="facebook/dinov2-large")
    hf_hub_download(repo_id="InstantX/InstantIR")
    
  3. logische Schlussfolgerung: Verwendung infer.sh Skripte für die Argumentation:
    ./infer.sh --sdxl_path <path_to_SDXL> --vision_encoder_path <path_to_DINOv2> --instantir_path <path_to_InstantIR> --test_path <path_to_input> --out_path <path_to_output>
    

Tipps und Tricks

  • übermäßige Glättung: Wille --cfg Der Parameter wird zwischen 3,0 und 5,0 eingestellt.
  • geringe Wiedergabetreue: Einstellungen --preview_start beträgt 0,1 bis 0,4, um die Eingabetreue zu erhalten.
  • lokale Verzerrung: Wille --creative_start Setzen Sie diesen Wert auf 0,6 bis 0,8, um in der Nachbearbeitung Details mit hohen Frequenzen zu erzeugen.
  • Beschleunigte Argumentation: Verbesserung --preview_start und niedriger --creative_start Dadurch können die Rechenkosten gesenkt und die Argumentation beschleunigt werden.

Verwendung von Diffusoren

InstantIR ist vollständig kompatibel mit Diffusoren und kann direkt geladen und verwendet werden:

import torch
from PIL import Image
from diffusers import DDPMScheduler
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler
from module.ip_adapter.utils import load_adapter_to_pipe
from pipelines.sdxl_instantir import InstantIRPipeline
# 加载预训练模型
pipe = InstantIRPipeline.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16)
load_adapter_to_pipe(pipe, 'facebook/dinov2-large')
pipe.prepare_previewers('path_to_InstantIR')
pipe.scheduler = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', subfolder="scheduler")
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
# 加载损坏图像并进行修复
low_quality_image = Image.open('path_to_image').convert("RGB")
image = pipe(image=low_quality_image, previewer_scheduler=lcm_scheduler).images[0]

Lokale Bereitstellung Gradio Demo

Für die lokale Bereitstellung der Gradio-Demo wird ein Python-Skript bereitgestellt:

INSTANTIR_PATH=<path_to_InstantIR> python gradio_demo/app.py

Besuchen Sie dann in Ihrem Browser http://localhost:7860 Führen Sie eine Demonstration durch.

 

InstantIR Ein-Klick-Installer

Reparatur 1024 Auflösung Bilder, Speicher mindestens 24gb Videospeicher mindestens 16gb, niedrige Grafikkarte nicht versuchen. Nach der Erzeugung mehrerer Bilder zur gleichen Zeit, ist die Speicherwiederherstellung abnormal.

Baidu.com herunterladen

夸克网盘下载

迅雷网盘下载

© urheberrechtliche Erklärung
AiPPT

Related posts

Keine Kommentare

keine
Keine Kommentare...