AI Engineering Institute: 3Fine-tuning (fine-tuning of large language models)

Trae

📚 Structure of the database

Models/CatalogDescription and content
AxolotlA framework for fine-tuning language models
GemmaGoogle's latest implementation of the Big Language Model
finetune-gemma.ipynb - gemma-sft.py - Gemma_finetuning_notebook.ipynbFine-tuning notebooks and scripts
LLama2Meta's Open Source Large Language Model
generate_response_stream.py - Llama2_finetuning_notebook.ipynb - Llama_2_Fine_Tuning_using_QLora.ipynbImplementation and fine-tuning guidelines
Llama3Upcoming Meta Large Language Modeling Experiments
Llama3_finetuning_notebook.ipynbInitial fine-tuning experiments
LlamaFactoryA Framework for Training and Deployment of Large Language Models
LLMArchitecture/ParameterCountTechnical details of the model architecture
Mistral-7bMistral AI The 7 billion parameter model
LLM_evaluation_harness_for_Arc_Easy_and_SST.ipynb - Mistral_Colab_Finetune_ipynb_Colab_Final.ipynb - notebooks_chatml_inference.ipynb - notebooks_DPO_fine_tuning.ipynb - notebooks_SFTTrainer TRL.ipynb - SFT.pyIntegrated notebook for assessment, fine-tuning and reasoning
MixtralMixtral's Expert Mixing Model
Mixtral_fine_tuning.ipynbFine-tuning Realization
VLMvisual language model
Florence2_finetuning_notebook.ipynb - PaliGemma_finetuning_notebook.ipynbVisual language model implementation

🎯 Module Overview

1. LLM architecture

  • Explore the following model implementations:
    • Llama2 (Meta's open source model)
    • Mistral-7b (efficient 7 billion parameter model)
    • Mixtral (expert hybrid architecture)
    • Gemma (Google's latest contribution)
    • Llama3 (upcoming experiment)

2. 🛠️ fine-tuning technology

  • implementation strategy
  • The LoRA (Low Rank Adaptation) approach
  • Advanced Optimization Methods

3. 🏗️ model architecture analysis

  • An in-depth study of the model structure
  • Parameter calculation method
  • Scalability Considerations

4. 🔧 Professional realization

  • Code Llama for programming tasks
  • Visual language modeling:
    • Florence2
    • PaliGemma

5. 💻 Practical applications

  • Integrated Jupyter Notebook
  • Response Generation Pipeline
  • Reasoning Implementation Guide

6. 🚀 Advanced Themes

  • DPO (Direct Preference Optimization)
  • SFT (supervised fine tuning)
  • Assessment methodology
© Copyright notes
AiPPT

Related posts

No comments

none
No comments...