CAG:比RAG快40倍的缓存增强生成方法

CAG:比RAG快40倍的缓存增强生成方法

比RAG(检索增强生成)快40倍的CAG(缓存增强生成)。CAG彻底改变了知识获取方式:不再是实时检索外部数据,而是预先将所有知识加载到模型上下文中。这就像是把一个巨大的图书馆浓缩成了一本随身携带的工...
5个月前
01.1K0
OpenAI-o3 与 Monte-Carlo 思想

OpenAI-o3 与 Monte-Carlo 思想

o3 来了,分享一些个人的浅见。关于 Test-time Scaling Law 的进展,比我们想象中的要快得多。但我想说的是,这条路其实有些曲折——它是 OpenAI 在追求 AGI 的道路上,采取...
5个月前
08580
如何为RAG应用选择最佳Embedding模型

如何为RAG应用选择最佳Embedding模型

向量Embedding是目前检索增强生成(RAG)应用程序的核心。它们捕获数据对象(如文本,图像等)的语义信息,并以数字数组表示。在时下的生成式AI应用中,这些向量Embedding通常由Embedd...
5个月前
09960
2025年值得入坑的 AI Agent 五大框架

2025年值得入坑的 AI Agent 五大框架

Agent 目前我见到的最多的翻译是“智能体”,但是直译是“代理”。 那 Agentic 又要翻译成什么呢?我感觉“代理型”这样的词更合适。 所以为了不让读者混淆,我在本文直接用英文表示。 随着 ...
5个月前
02K0
小白也能看懂的大模型微调知识点

小白也能看懂的大模型微调知识点

大模型微调全流程 建议在微调过程中严格按照以上流程执行,避免跳步,否则可能导致无效劳动。比如,如果没有充分构建数据集,最终发现微调模型效果不佳是数据集质量的问题,那么前期的努力将付诸东流,事倍功半...
5个月前
09060
Late Chunking×Milvus:如何提高RAG准确率

Late Chunking×Milvus:如何提高RAG准确率

01.背景 在RAG应用开发中,第一步就是对于文档进行chunking(分块),高效的文档分块,可以有效的提高后续的召回内容的准确性。而对于如何高效的分块是个讨论的热点,有诸如固定大小分块,随机大小分...
5个月前
09960
Anthropic总结构建高效智能体简单且有效的方法

Anthropic总结构建高效智能体简单且有效的方法

在过去的一年里,我们与多个行业中构建大语言模型 (LLM) 代理的团队合作。始终发现,最成功的实现并未使用复杂的框架或专用库,而是通过简单、可组合的模式构建完成。 在这篇文章中,我们将分享与客户合作以...
4个月前
01.4K0
2024年度RAG清单,RAG应用策略100+

2024年度RAG清单,RAG应用策略100+

回顾2024,大模型日新月异,智能体百家争鸣。作为AI应用的重要组成部分,RAG也是“群雄逐鹿,诸侯并起”。年初ModularRAG持续升温、GraphRAG大放异彩,年中开源工具如火如荼、知识图...
6个月前
01.3K0
卷起来了!长文本向量模型分块策略大比拼

卷起来了!长文本向量模型分块策略大比拼

长文本向量模型能够将十页长的文本编码为单个向量,听起来很强大,但真的实用吗? 很多人觉得... 未必。 直接用行不行?该不该分块?怎么分才最高效?本文将带你深入探讨长文本向量模型的不同分块策略,分析利...
6个月前
08940