如何为RAG应用选择最佳Embedding模型

如何为RAG应用选择最佳Embedding模型

向量Embedding是目前检索增强生成(RAG)应用程序的核心。它们捕获数据对象(如文本,图像等)的语义信息,并以数字数组表示。在时下的生成式AI应用中,这些向量Embedding通常由Embedd...
5个月前
09960
如何选择合适的 Embedding 模型?

如何选择合适的 Embedding 模型?

检索增强生成(RAG)是生成式 AI (GenAI)中的一类应用,支持使用自己的数据来增强 LLM 模型(如 ChatGPT)的知识。 RAG 通常会用到三种不同的AI模型,即 Embedding 模...
5个月前
07870
2025年值得入坑的 AI Agent 五大框架

2025年值得入坑的 AI Agent 五大框架

Agent 目前我见到的最多的翻译是“智能体”,但是直译是“代理”。 那 Agentic 又要翻译成什么呢?我感觉“代理型”这样的词更合适。 所以为了不让读者混淆,我在本文直接用英文表示。 随着 ...
5个月前
02.1K0
小白也能看懂的大模型微调知识点

小白也能看懂的大模型微调知识点

大模型微调全流程 建议在微调过程中严格按照以上流程执行,避免跳步,否则可能导致无效劳动。比如,如果没有充分构建数据集,最终发现微调模型效果不佳是数据集质量的问题,那么前期的努力将付诸东流,事倍功半...
5个月前
09130
Late Chunking×Milvus:如何提高RAG准确率

Late Chunking×Milvus:如何提高RAG准确率

01.背景 在RAG应用开发中,第一步就是对于文档进行chunking(分块),高效的文档分块,可以有效的提高后续的召回内容的准确性。而对于如何高效的分块是个讨论的热点,有诸如固定大小分块,随机大小分...
6个月前
09980
2024年度RAG清单,RAG应用策略100+

2024年度RAG清单,RAG应用策略100+

回顾2024,大模型日新月异,智能体百家争鸣。作为AI应用的重要组成部分,RAG也是“群雄逐鹿,诸侯并起”。年初ModularRAG持续升温、GraphRAG大放异彩,年中开源工具如火如荼、知识图...
6个月前
01.3K0
卷起来了!长文本向量模型分块策略大比拼

卷起来了!长文本向量模型分块策略大比拼

长文本向量模型能够将十页长的文本编码为单个向量,听起来很强大,但真的实用吗? 很多人觉得... 未必。 直接用行不行?该不该分块?怎么分才最高效?本文将带你深入探讨长文本向量模型的不同分块策略,分析利...
6个月前
08990
AI工程学院:4智能体工程化指南

AI工程学院:4智能体工程化指南

欢迎来到 AI 工程学院的 AI 代理部分!本模块探索 AI 代理的迷人世界,从基本模式到实际应用。学习如何创建、协调和部署智能代理,这些代理能够执行复杂任务并对其环境进行推理。 📚 仓库结构 类...
6个月前
08750